Donald Trump and Elon Musk’s chaotic approach to reform is upending government operations. Critical functions have been halted, tens of thousands of federal staffers are being encouraged to resign, and congressional mandates are being disregarded. The next phase: The Department of Government Efficiency reportedly wants to use AI to cut costs. According to The Washington Post, Musk’s group has started to run sensitive data from government systems through AI programs to analyze spending and determine what could be pruned. This may lead to the elimination of human jobs in favor of automation. As one government official who has been tracking Musk’s DOGE team told the Post, the ultimate aim is to use AI to replace “the human workforce with machines.” (Spokespeople for the White House and DOGE did not respond to requests for comment.)

Using AI to make government more efficient is a worthy pursuit, and this is not a new idea. The Biden administration disclosed more than 2,000 AI applications in development across the federal government. For example, FEMA has started using AI to help perform damage assessment in disaster areas. The Centers for Medicare and Medicaid Services has started using AI to look for fraudulent billing. The idea of replacing dedicated and principled civil servants with AI agents, however, is new—and complicated.

The civil service—the massive cadre of employees who operate government agencies—plays a vital role in translating laws and policy into the operation of society. New presidents can issue sweeping executive orders, but they often have no real effect until they actually change the behavior of public servants. Whether you think of these people as essential and inspiring do-gooders, boring bureaucratic functionaries, or as agents of a “deep state,” their sheer number and continuity act as ballast that resists institutional change.

This is why Trump and Musk’s actions are so significant. The more AI decision making is integrated into government, the easier change will be. If human workers are widely replaced with AI, executives will have unilateral authority to instantaneously alter the behavior of the government, profoundly raising the stakes for transitions of power in democracy. Trump’s unprecedented purge of the civil service might be the last time a president needs to replace the human beings in government in order to dictate its new functions. Future leaders may do so at the press of a button.

To be clear, the use of AI by the executive branch doesn’t have to be disastrous. In theory, it could allow new leadership to swiftly implement the wishes of its electorate. But this could go very badly in the hands of an authoritarian leader. AI systems concentrate power at the top, so they could allow an executive to effectuate change over sprawling bureaucracies instantaneously. Firing and replacing tens of thousands of human bureaucrats is a huge undertaking. Swapping one AI out for another, or modifying the rules that those AIs operate by, would be much simpler.

Social-welfare programs, if automated with AI, could be redirected to systematically benefit one group and disadvantage another with a single prompt change. Immigration-enforcement agencies could prioritize people for investigation and detainment with one instruction. Regulatory-enforcement agencies that monitor corporate behavior for malfeasance could turn their attention to, or away from, any given company on a whim.

Even if Congress were motivated to fight back against Trump and Musk, or against a future president seeking to bulldoze the will of the legislature, the absolute power to command AI agents would make it easier to subvert legislative intent. AI has the power to diminish representative politics. Written law is never fully determinative of the actions of government—there is always wiggle room for presidents, appointed leaders, and civil servants to exercise their own judgment. Whether intentional or not, whether charitably or not, each of these actors uses discretion. In human systems, that discretion is widely distributed across many individuals—people who, in the case of career civil servants, usually outlast presidencies.

Today, the AI ecosystem is dominated by a small number of corporations that decide how the most widely used AI models are designed, which data they are trained on, and which instructions they follow. Because their work is largely secretive and unaccountable to public interest, these tech companies are capable of making changes to the bias of AI systems—either generally or with aim at specific governmental use cases—that are invisible to the rest of us. And these private actors are both vulnerable to coercion by political leaders and self-interested in appealing to their favor. Musk himself created and funded xAI, now one of the world’s largest AI labs, with an explicitly ideological mandate to generate anti-“woke” AI and steer the wider AI industry in a similar direction.

But there’s a second way that AI’s transformation of government could go. AI development could happen inside of transparent and accountable public institutions, alongside its continued development by Big Tech. Applications of AI in democratic governments could be focused on benefitting public servants and the communities they serve by, for example, making it easier for non-English speakers to access government services, making ministerial tasks such as processing routine applications more efficient and reducing backlogs, or helping constituents weigh in on the policies deliberated by their representatives. Such AI integrations should be done gradually and carefully, with public oversight for their design and implementation and monitoring and guardrails to avoid unacceptable bias and harm.

Governments around the world are demonstrating how this could be done, though it’s early days. Taiwan has pioneered the use of AI models to facilitate deliberative democracy at an unprecedented scale. Singapore has been a leader in the development of public AI models, built transparently and with public-service use cases in mind. Canada has illustrated the role of disclosure and public input on the consideration of AI use cases in government. Even if you do not trust the current White House to follow any of these examples, U.S. states—which have much greater contact and influence over the daily lives of Americans than the federal government—could lead the way on this kind of responsible development and deployment of AI.

As the political theorist David Runciman has written, AI is just another in a long line of artificial “machines” used to govern how people live and act, not unlike corporations and states before it. AI doesn’t replace those older institutions, but it changes how they function. As the Trump administration forges stronger ties to Big Tech and AI developers, we need to recognize the potential of that partnership to steer the future of democratic governance—and act to make sure that it does not enable future authoritarians.

This essay was written with Nathan E. Sanders, and originally appeared in The Atlantic.

Last month, Henry Farrell and I convened the Third Interdisciplinary Workshop on Reimagining Democracy (IWORD 2024) at Johns Hopkins University’s Bloomberg Center in Washington DC. This is a small, invitational workshop on the future of democracy. As with the previous two workshops, the goal was to bring together a diverse set of political scientists, law professors, philosophers, AI researchers and other industry practitioners, political activists, and creative types (including science fiction writers) to discuss how democracy might be reimagined in the current century.

The goal of the workshop is to think very broadly. Modern democracy was invented in the mid-eighteenth century, using mid-eighteenth-century technology. If democracy were to be invented today, it would look very different. Elections would look different. The balance between representation and direct democracy would look different. Adjudication and enforcement would look different. Everything would look different, because our conceptions of fairness, justice, equality, and rights are different, and we have much more powerful technology to bring to bear on the problems. Also, we could start from scratch without having to worry about evolving our current democracy into this imagined future system.

We can’t do that, of course, but it’s still still valuable to speculate. Of course we need to figure out how to reform our current systems, but we shouldn’t limit our thinking to incremental steps. We also need to think about discontinuous changes as well. I wrote about the philosophy more in this essay about IWORD 2022.

IWORD 2024 was easily the most intellectually stimulating two days of my year. It’s also intellectually exhausting; the speed and intensity of ideas is almost too much. I wrote the format in my blog post on IWORD 2023.

Summaries of all the IWORD 2024 talks are in the first set of comments below. And here are links to the previous IWORDs:

IWORD 2025 will be held either in New York or New Haven; still to be determined.

In 2025, AI is poised to change every aspect of democratic politics—but it won’t necessarily be for the worse.

India’s prime minister, Narendra Modi, has used AI to translate his speeches for his multilingual electorate in real time, demonstrating how AI can help diverse democracies to be more inclusive. AI avatars were used by presidential candidates in South Korea in electioneering, enabling them to provide answers to thousands of voters’ questions simultaneously. We are also starting to see AI tools aid fundraising and get-out-the-vote efforts. AI techniques are starting to augment more traditional polling methods, helping campaigns get cheaper and faster data. And congressional candidates have started using AI robocallers to engage voters on issues. In 2025, these trends will continue. AI doesn’t need to be superior to human experts to augment the labor of an overworked canvasser, or to write ad copy similar to that of a junior campaign staffer or volunteer. Politics is competitive, and any technology that can bestow an advantage, or even just garner attention, will be used.

Most politics is local, and AI tools promise to make democracy more equitable. The typical candidate has few resources, so the choice may be between getting help from AI tools or getting no help at all. In 2024, a US presidential candidate with virtually zero name recognition, Jason Palmer, beat Joe Biden in a very small electorate, the American Samoan primary, by using AI-generated messaging and an online AI avatar.

At the national level, AI tools are more likely to make the already powerful even more powerful. Human + AI generally beats AI only: The more human talent you have, the more you can effectively make use of AI assistance. The richest campaigns will not put AIs in charge, but they will race to exploit AI where it can give them an advantage.

But while the promise of AI assistance will drive adoption, the risks are considerable. When computers get involved in any process, that process changes. Scalable automation, for example, can transform political advertising from one-size-fits-all into personalized demagoguing—candidates can tell each of us what they think we want to hear. Introducing new dependencies can also lead to brittleness: Exploiting gains from automation can mean dropping human oversight, and chaos results when critical computer systems go down.

Politics is adversarial. Any time AI is used by one candidate or party, it invites hacking by those associated with their opponents, perhaps to modify their behavior, eavesdrop on their output, or to simply shut them down. The kinds of disinformation weaponized by entities like Russia on social media will be increasingly targeted toward machines, too.

AI is different from traditional computer systems in that it tries to encode common sense and judgment that goes beyond simple rules; yet humans have no single ethical system, or even a single definition of fairness. We will see AI systems optimized for different parties and ideologies; for one faction not to trust the AIs of a rival faction; for everyone to have a healthy suspicion of corporate for-profit AI systems with hidden biases.

This is just the beginning of a trend that will spread through democracies around the world, and probably accelerate, for years to come. Everyone, especially AI skeptics and those concerned about its potential to exacerbate bias and discrimination, should recognize that AI is coming for every aspect of democracy. The transformations won’t come from the top down; they will come from the bottom up. Politicians and campaigns will start using AI tools when they are useful. So will lawyers, and political advocacy groups. Judges will use AI to help draft their decisions because it will save time. News organizations will use AI because it will justify budget cuts. Bureaucracies and regulators will add AI to their already algorithmic systems for determining all sorts of benefits and penalties.

Whether this results in a better democracy, or a more just world, remains to be seen. Keep watching how those in power uses these tools, and also how they empower the currently powerless. Those of us who are constituents of democracies should advocate tirelessly to ensure that we use AI systems to better democratize democracy, and not to further its worst tendencies.

This essay was written with Nathan E. Sanders, and originally appeared in Wired.

In July, I wrote about my new book project on AI and democracy, to be published by MIT Press in fall 2025. My co-author and collaborator Nathan Sanders and I are hard at work writing.

At this point, we would like feedback on titles. Here are four possibilities:

  1. Rewiring the Republic: How AI Will Transform our Politics, Government, and Citizenship
  2. The Thinking State: How AI Can Improve Democracy
  3. Better Run: How AI Can Make our Politics, Government, Citizenship More Efficient, Effective and Fair
  4. AI and the New Future of Democracy: Changes in Politics, Government, and Citizenship

What we want out of the title is that it convey (1) that it is a book about AI, (2) that it is a book about democracy writ large (and not just deepfakes), and (3) that it is largely optimistic.

What do you like? Feel free to do some mixing and matching: swapping “Will Transform” for “Will Improve” for “Can Transform” for “Can Improve,” for example. Or “Democracy” for “the Republic.” Remember, the goal here is for a title that will make a potential reader pick the book up off a shelf, or read the blurb text on a webpage. It needs to be something that will catch the reader’s attention. (Other title ideas are here).

Also, FYI, this is the current table of contents:

Introduction
1. Introduction: How AI will Change Democracy
2. Core AI Capabilities
3. Democracy as an Information System

Part I: AI-Assisted Politics
4. Background: Making Mistakes
5. Talking to Voters
6. Conducting Polls
7. Organizing a Political Campaign
8. Fundraising for Politics
9. Being a Politician

Part II: AI-Assisted Legislators
10. Background: Explaining Itself
11. Background: Who’s to Blame?
12. Listening to Constituents
13. Writing Laws
14. Writing More Complex Laws
15. Writing Laws that Empower Machines
16. Negotiating Legislation

Part III: The AI-Assisted Administration
17. Background: Exhibiting Values and Bias
18. Background: Augmenting Versus Replacing People
19. Serving People
20. Operating Government
21. Enforcing Regulations

Part IV: The AI-Assisted Court
22. Background: Being Fair
23. Background: Getting Hacked
24. Acting as a Lawyer
25. Arbitrating Disputes
26. Enforcing the Law
27. Reshaping Legislative Intent
28. Being a Judge

Part V: AI-Assisted Citizens
29. Background: AI and Power
30. Background: AI and Trust
31. Explaining the News
32. Watching the Government
33. Moderating, Facilitating, and Building Consensus
34. Acting as Your Personal Advocate
35. Acting as Your Personal Political Proxy

Part VI: Ensuring That AI Benefits Democracy
36. Why AI is Not Yet Good for Democracy
37. How to Ensure AI is Good for Democracy
38. What We Need to Do Now
39. Conclusion

Everything is subject to change, of course. The manuscript isn’t due to the publisher until the end of March, and who knows what AI developments will happen between now and then.

EDITED: The title under consideration is “Rewiring the Republic,” and not “Rewiring Democracy.” Although, I suppose, both are really under consideration.

For years now, AI has undermined the public’s ability to trust what it sees, hears, and reads. The Republican National Committee released a provocative ad offering an “AI-generated look into the country’s possible future if Joe Biden is re-elected,” showing apocalyptic, machine-made images of ruined cityscapes and chaos at the border. Fake robocalls purporting to be from Biden urged New Hampshire residents not to vote in the 2024 primary election. This summer, the Department of Justice cracked down on a Russian bot farm that was using AI to impersonate Americans on social media, and OpenAI disrupted an Iranian group using ChatGPT to generate fake social-media comments.

It’s not altogether clear what damage AI itself may cause, though the reasons for concern are obvious—the technology makes it easier for bad actors to construct highly persuasive and misleading content. With that risk in mind, there has been some movement toward constraining the use of AI, yet progress has been painstakingly slow in the area where it may count most: the 2024 election.

Two years ago, the Biden administration issued a blueprint for an AI Bill of Rights aiming to address “unsafe or ineffective systems,” “algorithmic discrimination,” and “abusive data practices,” among other things. Then, last year, Biden built on that document when he issued his executive order on AI. Also in 2023, Senate Majority Leader Chuck Schumer held an AI summit in Washington that included the centibillionaires Bill Gates, Mark Zuckerberg, and Elon Musk. Several weeks later, the United Kingdom hosted an international AI Safety Summit that led to the serious-sounding “Bletchley Declaration,” which urged international cooperation on AI regulation. The risks of AI fakery in elections have not sneaked up on anybody.

Yet none of this has resulted in changes that would resolve the use of AI in U.S. political campaigns. Even worse, the two federal agencies with a chance to do something about it have punted the ball, very likely until after the election.

On July 25, the Federal Communications Commission issued a proposal that would require political advertisements on TV and radio to disclose if they used AI. (The FCC has no jurisdiction over streaming, social media, or web ads.) That seems like a step forward, but there are two big problems. First, the proposed rules, even if enacted, are unlikely to take effect before early voting starts in this year’s election. Second, the proposal immediately devolved into a partisan slugfest. A Republican FCC commissioner alleged that the Democratic National Committee was orchestrating the rule change because Democrats are falling behind the GOP in using AI in elections. Plus, he argued, this was the Federal Election Commission’s job to do.

Yet last month, the FEC announced that it won’t even try making new rules against using AI to impersonate candidates in campaign ads through deepfaked audio or video. The FEC also said that it lacks the statutory authority to make rules about misrepresentations using deepfaked audio or video. And it lamented that it lacks the technical expertise to do so, anyway. Then, last week, the FEC compromised, announcing that it intends to enforce its existing rules against fraudulent misrepresentation regardless of what technology it is conducted with. Advocates for stronger rules on AI in campaign ads, such as Public Citizen, did not find this nearly sufficient, characterizing it as a “wait-and-see approach” to handling “electoral chaos.”

Perhaps this is to be expected: The freedom of speech guaranteed by the First Amendment generally permits lying in political ads. But the American public has signaled that it would like some rules governing AI’s use in campaigns. In 2023, more than half of Americans polled responded that the federal government should outlaw all uses of AI-generated content in political ads. Going further, in 2024, about half of surveyed Americans said they thought that political candidates who intentionally manipulated audio, images, or video should be prevented from holding office or removed if they had won an election. Only 4 percent thought there should be no penalty at all.

The underlying problem is that Congress has not clearly given any agency the responsibility to keep political advertisements grounded in reality, whether in response to AI or old-fashioned forms of disinformation. The Federal Trade Commission has jurisdiction over truth in advertising, but political ads are largely exempt—again, part of our First Amendment tradition. The FEC’s remit is campaign finance, but the Supreme Court has progressively stripped its authorities. Even where it could act, the commission is often stymied by political deadlock. The FCC has more evident responsibility for regulating political advertising, but only in certain media: broadcast, robocalls, text messages. Worse yet, the FCC’s rules are not exactly robust. It has actually loosened rules on political spam over time, leading to the barrage of messages many receive today. (That said, in February, the FCC did unanimously rule that robocalls using AI voice-cloning technology, like the Biden ad in New Hampshire, are already illegal under a 30-year-old law.)

It’s a fragmented system, with many important activities falling victim to gaps in statutory authority and a turf war between federal agencies. And as political campaigning has gone digital, it has entered an online space with even fewer disclosure requirements or other regulations. No one seems to agree where, or whether, AI is under any of these agencies’ jurisdictions. In the absence of broad regulation, some states have made their own decisions. In 2019, California was the first state in the nation to prohibit the use of deceptively manipulated media in elections, and has strengthened these protections with a raft of newly passed laws this fall. Nineteen states have now passed laws regulating the use of deepfakes in elections.

One problem that regulators have to contend with is the wide applicability of AI: The technology can simply be used for many different things, each one demanding its own intervention. People might accept a candidate digitally airbrushing their photo to look better, but not doing the same thing to make their opponent look worse. We’re used to getting personalized campaign messages and letters signed by the candidate; is it okay to get a robocall with a voice clone of the same politician speaking our name? And what should we make of the AI-generated campaign memes now shared by figures such as Musk and Donald Trump?

Despite the gridlock in Congress, these are issues with bipartisan interest. This makes it conceivable that something might be done, but probably not until after the 2024 election and only if legislators overcome major roadblocks. One bill under consideration, the AI Transparency in Elections Act, would instruct the FEC to require disclosure when political advertising uses media generated substantially by AI. Critics say, implausibly, that the disclosure is onerous and would increase the cost of political advertising. The Honest Ads Act would modernize campaign-finance law, extending FEC authority to definitively encompass digital advertising. However, it has languished for years because of reported opposition from the tech industry. The Protect Elections From Deceptive AI Act would ban materially deceptive AI-generated content from federal elections, as in California and other states. These are promising proposals, but libertarian and civil-liberties groups are already signaling challenges to all of these on First Amendment grounds. And, vexingly, at least one FEC commissioner has directly cited congressional consideration of some of these bills as a reason for his agency not to act on AI in the meantime.

One group that benefits from all this confusion: tech platforms. When few or no evident rules govern political expenditures online and uses of new technologies like AI, tech companies have maximum latitude to sell ads, services, and personal data to campaigns. This is reflected in their lobbying efforts, as well as the voluntary policy restraints they occasionally trumpet to convince the public they don’t need greater regulation.

Big Tech has demonstrated that it will uphold these voluntary pledges only if they benefit the industry. Facebook once, briefly, banned political advertising on its platform. No longer; now it even allows ads that baselessly deny the outcome of the 2020 presidential election. OpenAI’s policies have long prohibited political campaigns from using ChatGPT, but those restrictions are trivial to evade. Several companies have volunteered to add watermarks to AI-generated content, but they are easily circumvented. Watermarks might even make disinformation worse by giving the false impression that non-watermarked images are legitimate.

This important public policy should not be left to corporations, yet Congress seems resigned not to act before the election. Schumer hinted to NBC News in August that Congress may try to attach deepfake regulations to must-pass funding or defense bills this month to ensure that they become law before the election. More recently, he has pointed to the need for action “beyond the 2024 election.”

The three bills listed above are worthwhile, but they are just a start. The FEC and FCC should not be left to snipe with each other about what territory belongs to which agency. And the FEC needs more significant, structural reform to reduce partisan gridlock and enable it to get more done. We also need transparency into and governance of the algorithmic amplification of misinformation on social-media platforms. That requires that the pervasive influence of tech companies and their billionaire investors should be limited through stronger lobbying and campaign-finance protections.

Our regulation of electioneering never caught up to AOL, let alone social media and AI. And deceiving videos harm our democratic process, whether they are created by AI or actors on a soundstage. But the urgent concern over AI should be harnessed to advance legislative reform. Congress needs to do more than stick a few fingers in the dike to control the coming tide of election disinformation. It needs to act more boldly to reshape the landscape of regulation for political campaigning.

This essay was written with Nathan Sanders, and originally appeared in The Atlantic.

If you’ve been reading my blog, you’ve noticed that I have written a lot about AI and democracy, mostly with my co-author Nathan Sanders. I am pleased to announce that we’re writing a book on the topic.

This isn’t a book about deep fakes, or misinformation. This is a book about what happens when AI writes laws, adjudicates disputes, audits bureaucratic actions, assists in political strategy, and advises citizens on what candidates and issues to support. It’s a book that tries to look into what an AI-assisted democratic system might look like, and then at how to best ensure that we make use of the good parts while avoiding the bad parts.

This is what I talked about in my RSA Conference speech last month, which you can both watch and read. (You can also read earlier attempts at this idea.)

The book will be published by MIT Press sometime in fall 2025, with an open-access digital version available a year after that. (It really can’t be published earlier. Nothing published this year will rise above the noise of the US presidential election, and anything published next spring will have to go to press without knowing the results of that election.)

Right now, the organization of the book is in six parts:

AI-Assisted Politicians
AI-Assisted Legislators
The AI-Assisted Administration
The AI-Assisted Legal System
AI-Assisted Citizens
Getting the Future We Want

It’s too early to share a more detailed table of contents, but I would like help thinking about titles. Below are my current list of brainstorming ideas: both titles and subtitles. Please mix and match, or suggest your own in the comments. No idea is too far afield, because anything can spark more ideas.

Titles:

AI and Democracy
Democracy with AI
Democracy after AI
Democratia ex Machina
Democracy ex Machina
E Pluribus, Machina
Democracy and the Machines
Democracy with Machines
Building Democracy with Machines
Democracy in the Loop
We the People + AI
Artificial Democracy
AI Enhanced Democracy
The State of AI
Citizen AI

Trusting the Bots
Trusting the Computer
Trusting the Machine

The End of the Beginning
Sharing Power
Better Run
Speed, Scale, Scope, and Sophistication
The New Model of Governance
Model Citizen
Artificial Individualism

Subtitles:

How AI Upsets the Power Balances of Democracy
Twenty (or So) Ways AI will Change Democracy
Reimagining Democracy for the Age of AI
Who Wins and Loses
How Democracy Thrives in an AI-Enhanced World
Ensuring that AI Enhances Democracy and Doesn’t Destroy It
How AI Will Change Politics, Legislating, Bureaucracy, Courtrooms, and Citizens
AI’s Transformation of Government, Citizenship, and Everything In-Between
Remaking Democracy, from Voting to Legislating to Waiting in Line
How to Make Democracy Work for People in an AI Future
How AI Will Totally Reshape Democracies and Democratic Institutions
Who Wins and Loses when AI Governs
How to Win and Not Lose With AI as a Partner
AI’s Transformation of Democracy, for Better and for Worse
How AI Can Improve Society and Not Destroy It
How AI Can Improve Society and Not Subvert It
Of the People, for the People, with a Whole lot of AI
How AI Will Reshape Democracy
How the AI Revolution Will Reshape Democracy

Combinations:

Imagining a Thriving Democracy in the Age of AI: How Technology Enhances Democratic Ideals and Nurtures a Society that Serves its People

Making Model Citizens: How to Put AI to Use to Help Democracy
Modeling Citizenship: Who Wins and Who Loses when AI Transforms Democracy
A Model for Government: Democracy with AI, and How to Make it Work for Us

AI of, By, and for the People: How Artificial Intelligence will reshape Democracy
The (AI) Political Revolution: Speed, Scale, Scope, Sophistication, and our Democracy
Speed, Scale, Scope, Sophistication: The AI Democratic Revolution
The Artificial Political Revolution: X Ways AI will Change Democracy…Forever

EDITED TO ADD (7/10): More options:

The Silicon Realignment: The Future of Political Power in a Digital World
Political Machines
EveryTHING is political

There is a lot written about technology’s threats to democracy. Polarization. Artificial intelligence. The concentration of wealth and power. I have a more general story: The political and economic systems of governance that were created in the mid-18th century are poorly suited for the 21st century. They don’t align incentives well. And they are being hacked too effectively.

At the same time, the cost of these hacked systems has never been greater, across all human history. We have become too powerful as a species. And our systems cannot keep up with fast-changing disruptive technologies.

We need to create new systems of governance that align incentives and are resilient against hacking … at every scale. From the individual all the way up to the whole of society.

For this, I need you to drop your 20th century either/or thinking. This is not about capitalism versus communism. It’s not about democracy versus autocracy. It’s not even about humans versus AI. It’s something new, something we don’t have a name for yet. And it’s “blue sky” thinking, not even remotely considering what’s feasible today.

Throughout this talk, I want you to think of both democracy and capitalism as information systems. Socio-technical information systems. Protocols for making group decisions. Ones where different players have different incentives. These systems are vulnerable to hacking and need to be secured against those hacks.

We security technologists have a lot of expertise in both secure system design and hacking. That’s why we have something to add to this discussion.

And finally, this is a work in progress. I’m trying to create a framework for viewing governance. So think of this more as a foundation for discussion, rather than a road map to a solution. And I think by writing, and what you’re going to hear is the current draft of my writing—and my thinking. So everything is subject to change without notice.

OK, so let’s go.

We all know about misinformation and how it affects democracy. And how propagandists have used it to advance their agendas. This is an ancient problem, amplified by information technologies. Social media platforms that prioritize engagement. “Filter bubble” segmentation. And technologies for honing persuasive messages.

The problem ultimately stems from the way democracies use information to make policy decisions. Democracy is an information system that leverages collective intelligence to solve political problems. And then to collect feedback as to how well those solutions are working. This is different from autocracies that don’t leverage collective intelligence for political decision making. Or have reliable mechanisms for collecting feedback from their populations.

Those systems of democracy work well, but have no guardrails when fringe ideas become weaponized. That’s what misinformation targets. The historical solution for this was supposed to be representation. This is currently failing in the US, partly because of gerrymandering, safe seats, only two parties, money in politics and our primary system. But the problem is more general.

James Madison wrote about this in 1787, where he made two points. One, that representatives serve to filter popular opinions, limiting extremism. And two, that geographical dispersal makes it hard for those with extreme views to participate. It’s hard to organize. To be fair, these limitations are both good and bad. In any case, current technology—social media—breaks them both.

So this is a question: What does representation look like in a world without either filtering or geographical dispersal? Or, how do we avoid polluting 21st century democracy with prejudice, misinformation and bias. Things that impair both the problem solving and feedback mechanisms.

That’s the real issue. It’s not about misinformation, it’s about the incentive structure that makes misinformation a viable strategy.

This is problem No. 1: Our systems have misaligned incentives. What’s best for the small group often doesn’t match what’s best for the whole. And this is true across all sorts of individuals and group sizes.

Now, historically, we have used misalignment to our advantage. Our current systems of governance leverage conflict to make decisions. The basic idea is that coordination is inefficient and expensive. Individual self-interest leads to local optimizations, which results in optimal group decisions.

But this is also inefficient and expensive. The U.S. spent $14.5 billion on the 2020 presidential, senate and congressional elections. I don’t even know how to calculate the cost in attention. That sounds like a lot of money, but step back and think about how the system works. The economic value of winning those elections are so great because that’s how you impose your own incentive structure on the whole.

More generally, the cost of our market economy is enormous. For example, $780 billion is spent world-wide annually on advertising. Many more billions are wasted on ventures that fail. And that’s just a fraction of the total resources lost in a competitive market environment. And there are other collateral damages, which are spread non-uniformly across people.

We have accepted these costs of capitalism—and democracy—because the inefficiency of central planning was considered to be worse. That might not be true anymore. The costs of conflict have increased. And the costs of coordination have decreased. Corporations demonstrate that large centrally planned economic units can compete in today’s society. Think of Walmart or Amazon. If you compare GDP to market cap, Apple would be the eighth largest country on the planet. Microsoft would be the tenth.

Another effect of these conflict-based systems is that they foster a scarcity mindset. And we have taken this to an extreme. We now think in terms of zero-sum politics. My party wins, your party loses. And winning next time can be more important than governing this time. We think in terms of zero-sum economics. My product’s success depends on my competitors’ failures. We think zero-sum internationally. Arms races and trade wars.

Finally, conflict as a problem-solving tool might not give us good enough answers anymore. The underlying assumption is that if everyone pursues their own self interest, the result will approach everyone’s best interest. That only works for simple problems and requires systemic oppression. We have lots of problems—complex, wicked, global problems—that don’t work that way. We have interacting groups of problems that don’t work that way. We have problems that require more efficient ways of finding optimal solutions.

Note that there are multiple effects of these conflict-based systems. We have bad actors deliberately breaking the rules. And we have selfish actors taking advantage of insufficient rules.

The latter is problem No. 2: What I refer to as “hacking” in my latest book: “A Hacker’s Mind.” Democracy is a socio-technical system. And all socio-technical systems can be hacked. By this I mean that the rules are either incomplete or inconsistent or outdated—they have loopholes. And these can be used to subvert the rules. This is Peter Thiel subverting the Roth IRA to avoid paying taxes on $5 billion in income. This is gerrymandering, the filibuster, and must-pass legislation. Or tax loopholes, financial loopholes, regulatory loopholes.

In today’s society, the rich and powerful are just too good at hacking. And it is becoming increasingly impossible to patch our hacked systems. Because the rich use their power to ensure that the vulnerabilities don’t get patched.

This is bad for society, but it’s basically the optimal strategy in our competitive governance systems. Their zero-sum nature makes hacking an effective, if parasitic, strategy. Hacking isn’t a new problem, but today hacking scales better—and is overwhelming the security systems in place to keep hacking in check. Think about gun regulations, climate change, opioids. And complex systems make this worse. These are all non-linear, tightly coupled, unrepeatable, path-dependent, adaptive, co-evolving systems.

Now, add into this mix the risks that arise from new and dangerous technologies such as the internet or AI or synthetic biology. Or molecular nanotechnology, or nuclear weapons. Here, misaligned incentives and hacking can have catastrophic consequences for society.

This is problem No. 3: Our systems of governance are not suited to our power level. They tend to be rights based, not permissions based. They’re designed to be reactive, because traditionally there was only so much damage a single person could do.

We do have systems for regulating dangerous technologies. Consider automobiles. They are regulated in many ways: drivers licenses + traffic laws + automobile regulations + road design. Compare this to aircrafts. Much more onerous licensing requirements, rules about flights, regulations on aircraft design and testing and a government agency overseeing it all day-to-day. Or pharmaceuticals, which have very complex rules surrounding everything around researching, developing, producing and dispensing. We have all these regulations because this stuff can kill you.

The general term for this kind of thing is the “precautionary principle.” When random new things can be deadly, we prohibit them unless they are specifically allowed.

So what happens when a significant percentage of our jobs are as potentially damaging as a pilot’s? Or even more damaging? When one person can affect everyone through synthetic biology. Or where a corporate decision can directly affect climate. Or something in AI or robotics. Things like the precautionary principle are no longer sufficient. Because breaking the rules can have global effects.

And AI will supercharge hacking. We have created a series of non-interoperable systems that actually interact and AI will be able to figure out how to take advantage of more of those interactions: finding new tax loopholes or finding new ways to evade financial regulations. Creating “micro-legislation” that surreptitiously benefits a particular person or group. And catastrophic risk means this is no longer tenable.

So these are our core problems: misaligned incentives leading to too effective hacking of systems where the costs of getting it wrong can be catastrophic.

Or, to put more words on it: Misaligned incentives encourage local optimization, and that’s not a good proxy for societal optimization. This encourages hacking, which now generates greater harm than at any point in the past because the amount of damage that can result from local optimization is greater than at any point in the past.

OK, let’s get back to the notion of democracy as an information system. It’s not just democracy: Any form of governance is an information system. It’s a process that turns individual beliefs and preferences into group policy decisions. And, it uses feedback mechanisms to determine how well those decisions are working and then makes corrections accordingly.

Historically, there are many ways to do this. We can have a system where no one’s preference matters except the monarch’s or the nobles’ or the landowners’. Sometimes the stronger army gets to decide—or the people with the money.

Or we could tally up everyone’s preferences and do the thing that at least half of the people want. That’s basically the promise of democracy today, at its ideal. Parliamentary systems are better, but only in the margins—and it all feels kind of primitive. Lots of people write about how informationally poor elections are at aggregating individual preferences. It also results in all these misaligned incentives.

I realize that democracy serves different functions. Peaceful transition of power, minimizing harm, equality, fair decision making, better outcomes. I am taking for granted that democracy is good for all those things. I’m focusing on how we implement it.

Modern democracy uses elections to determine who represents citizens in the decision-making process. And all sorts of other ways to collect information about what people think and want, and how well policies are working. These are opinion polls, public comments to rule-making, advocating, lobbying, protesting and so on. And, in reality, it’s been hacked so badly that it does a terrible job of executing on the will of the people, creating further incentives to hack these systems.

To be fair, the democratic republic was the best form of government that mid 18th century technology could invent. Because communications and travel were hard, we needed to choose one of us to go all the way over there and pass laws in our name. It was always a coarse approximation of what we wanted. And our principles, values, conceptions of fairness; our ideas about legitimacy and authority have evolved a lot since the mid 18th century. Even the notion of optimal group outcomes depended on who was considered in the group and who was out.

But democracy is not a static system, it’s an aspirational direction. One that really requires constant improvement. And our democratic systems have not evolved at the same pace that our technologies have. Blocking progress in democracy is itself a hack of democracy.

Today we have much better technology that we can use in the service of democracy. Surely there are better ways to turn individual preferences into group policies. Now that communications and travel are easy. Maybe we should assign representation by age, or profession or randomly by birthday. Maybe we can invent an AI that calculates optimal policy outcomes based on everyone’s preferences.

Whatever we do, we need systems that better align individual and group incentives, at all scales. Systems designed to be resistant to hacking. And resilient to catastrophic risks. Systems that leverage cooperation more and conflict less. And are not zero-sum.

Why can’t we have a game where everybody wins?

This has never been done before. It’s not capitalism, it’s not communism, it’s not socialism. It’s not current democracies or autocracies. It would be unlike anything we’ve ever seen.

Some of this comes down to how trust and cooperation work. When I wrote “Liars and Outliers” in 2012, I wrote about four systems for enabling trust: our innate morals, concern about our reputations, the laws we live under and security technologies that constrain our behavior. I wrote about how the first two are more informal than the last two. And how the last two scale better, and allow for larger and more complex societies. They enable cooperation amongst strangers.

What I didn’t appreciate is how different the first and last two are. Morals and reputation are both old biological systems of trust. They’re person to person, based on human connection and cooperation. Laws—and especially security technologies—are newer systems of trust that force us to cooperate. They’re socio-technical systems. They’re more about confidence and control than they are about trust. And that allows them to scale better. Taxi driver used to be one of the country’s most dangerous professions. Uber changed that through pervasive surveillance. My Uber driver and I don’t know or trust each other, but the technology lets us both be confident that neither of us will cheat or attack each other. Both drivers and passengers compete for star rankings, which align local and global incentives.

In today’s tech-mediated world, we are replacing the rituals and behaviors of cooperation with security mechanisms that enforce compliance. And innate trust in people with compelled trust in processes and institutions. That scales better, but we lose the human connection. It’s also expensive, and becoming even more so as our power grows. We need more security for these systems. And the results are much easier to hack.

But here’s the thing: Our informal human systems of trust are inherently unscalable. So maybe we have to rethink scale.

Our 18th century systems of democracy were the only things that scaled with the technology of the time. Imagine a group of friends deciding where to have dinner. One is kosher, one is a vegetarian. They would never use a winner-take-all ballot to decide where to eat. But that’s a system that scales to large groups of strangers.

Scale matters more broadly in governance as well. We have global systems of political and economic competition. On the other end of the scale, the most common form of governance on the planet is socialism. It’s how families function: people work according to their abilities, and resources are distributed according to their needs.

I think we need governance that is both very large and very small. Our catastrophic technological risks are planetary-scale: climate change, AI, internet, bio-tech. And we have all the local problems inherent in human societies. We have very few problems anymore that are the size of France or Virginia. Some systems of governance work well on a local level but don’t scale to larger groups. But now that we have more technology, we can make other systems of democracy scale.

This runs headlong into historical norms about sovereignty. But that’s already becoming increasingly irrelevant. The modern concept of a nation arose around the same time as the modern concept of democracy. But constituent boundaries are now larger and more fluid, and depend a lot on context. It makes no sense that the decisions about the “drug war”—or climate migration—are delineated by nation. The issues are much larger than that. Right now there is no governance body with the right footprint to regulate Internet platforms like Facebook. Which has more users world-wide than Christianity.

We also need to rethink growth. Growth only equates to progress when the resources necessary to grow are cheap and abundant. Growth is often extractive. And at the expense of something else. Growth is how we fuel our zero-sum systems. If the pie gets bigger, it’s OK that we waste some of the pie in order for it to grow. That doesn’t make sense when resources are scarce and expensive. Growing the pie can end up costing more than the increase in pie size. Sustainability makes more sense. And a metric more suited to the environment we’re in right now.

Finally, agility is also important. Back to systems theory, governance is an attempt to control complex systems with complicated systems. This gets harder as the systems get larger and more complex. And as catastrophic risk raises the costs of getting it wrong.

In recent decades, we have replaced the richness of human interaction with economic models. Models that turn everything into markets. Market fundamentalism scaled better, but the social cost was enormous. A lot of how we think and act isn’t captured by those models. And those complex models turn out to be very hackable. Increasingly so at larger scales.

Lots of people have written about the speed of technology versus the speed of policy. To relate it to this talk: Our human systems of governance need to be compatible with the technologies they’re supposed to govern. If they’re not, eventually the technological systems will replace the governance systems. Think of Twitter as the de facto arbiter of free speech.

This means that governance needs to be agile. And able to quickly react to changing circumstances. Imagine a court saying to Peter Thiel: “Sorry. That’s not how Roth IRAs are supposed to work. Now give us our tax on that $5B.” This is also essential in a technological world: one that is moving at unprecedented speeds, where getting it wrong can be catastrophic and one that is resource constrained. Agile patching is how we maintain security in the face of constant hacking—and also red teaming. In this context, both journalism and civil society are important checks on government.

I want to quickly mention two ideas for democracy, one old and one new. I’m not advocating for either. I’m just trying to open you up to new possibilities. The first is sortition. These are citizen assemblies brought together to study an issue and reach a policy decision. They were popular in ancient Greece and Renaissance Italy, and are increasingly being used today in Europe. The only vestige of this in the U.S. is the jury. But you can also think of trustees of an organization. The second idea is liquid democracy. This is a system where everybody has a proxy that they can transfer to someone else to vote on their behalf. Representatives hold those proxies, and their vote strength is proportional to the number of proxies they have. We have something like this in corporate proxy governance.

Both of these are algorithms for converting individual beliefs and preferences into policy decisions. Both of these are made easier through 21st century technologies. They are both democracies, but in new and different ways. And while they’re not immune to hacking, we can design them from the beginning with security in mind.

This points to technology as a key component of any solution. We know how to use technology to build systems of trust. Both the informal biological kind and the formal compliance kind. We know how to use technology to help align incentives, and to defend against hacking.

We talked about AI hacking; AI can also be used to defend against hacking, finding vulnerabilities in computer code, finding tax loopholes before they become law and uncovering attempts at surreptitious micro-legislation.

Think back to democracy as an information system. Can AI techniques be used to uncover our political preferences and turn them into policy outcomes, get feedback and then iterate? This would be more accurate than polling. And maybe even elections. Can an AI act as our representative? Could it do a better job than a human at voting the preferences of its constituents?

Can we have an AI in our pocket that votes on our behalf, thousands of times a day, based on the preferences it infers we have. Or maybe based on the preferences it infers we would have if we read up on the issues and weren’t swayed by misinformation. It’s just another algorithm for converting individual preferences into policy decisions. And it certainly solves the problem of people not paying attention to politics.

But slow down: This is rapidly devolving into technological solutionism. And we know that doesn’t work.

A general question to ask here is when do we allow algorithms to make decisions for us? Sometimes it’s easy. I’m happy to let my thermostat automatically turn my heat on and off or to let an AI drive a car or optimize the traffic lights in a city. I’m less sure about an AI that sets tax rates, or corporate regulations or foreign policy. Or an AI that tells us that it can’t explain why, but strongly urges us to declare war—right now. Each of these is harder because they are more complex systems: non-local, multi-agent, long-duration and so on. I also want any AI that works on my behalf to be under my control. And not controlled by a large corporate monopoly that allows me to use it.

And learned helplessness is an important consideration. We’re probably OK with no longer needing to know how to drive a car. But we don’t want a system that results in us forgetting how to run a democracy. Outcomes matter here, but so do mechanisms. Any AI system should engage individuals in the process of democracy, not replace them.

So while an AI that does all the hard work of governance might generate better policy outcomes. There is social value in a human-centric political system, even if it is less efficient. And more technologically efficient preference collection might not be better, even if it is more accurate.

Procedure and substance need to work together. There is a role for AI in decision making: moderating discussions, highlighting agreements and disagreements helping people reach consensus. But it is an independent good that we humans remain engaged in—and in charge of—the process of governance.

And that value is critical to making democracy function. Democratic knowledge isn’t something that’s out there to be gathered: It’s dynamic; it gets produced through the social processes of democracy. The term of art is “preference formation.” We’re not just passively aggregating preferences, we create them through learning, deliberation, negotiation and adaptation. Some of these processes are cooperative and some of these are competitive. Both are important. And both are needed to fuel the information system that is democracy.

We’re never going to remove conflict and competition from our political and economic systems. Human disagreement isn’t just a surface feature; it goes all the way down. We have fundamentally different aspirations. We want different ways of life. I talked about optimal policies. Even that notion is contested: optimal for whom, with respect to what, over what time frame? Disagreement is fundamental to democracy. We reach different policy conclusions based on the same information. And it’s the process of making all of this work that makes democracy possible.

So we actually can’t have a game where everybody wins. Our goal has to be to accommodate plurality, to harness conflict and disagreement, and not to eliminate it. While, at the same time, moving from a player-versus-player game to a player-versus-environment game.

There’s a lot missing from this talk. Like what these new political and economic governance systems should look like. Democracy and capitalism are intertwined in complex ways, and I don’t think we can recreate one without also recreating the other. My comments about agility lead to questions about authority and how that interplays with everything else. And how agility can be hacked as well. We haven’t even talked about tribalism in its many forms. In order for democracy to function, people need to care about the welfare of strangers who are not like them. We haven’t talked about rights or responsibilities. What is off limits to democracy is a huge discussion. And Butterin’s trilemma also matters here: that you can’t simultaneously build systems that are secure, distributed, and scalable.

I also haven’t given a moment’s thought to how to get from here to there. Everything I’ve talked about—incentives, hacking, power, complexity—also applies to any transition systems. But I think we need to have unconstrained discussions about what we’re aiming for. If for no other reason than to question our assumptions. And to imagine the possibilities. And while a lot of the AI parts are still science fiction, they’re not far-off science fiction.

I know we can’t clear the board and build a new governance structure from scratch. But maybe we can come up with ideas that we can bring back to reality.

To summarize, the systems of governance we designed at the start of the Industrial Age are ill-suited to the Information Age. Their incentive structures are all wrong. They’re insecure and they’re wasteful. They don’t generate optimal outcomes. At the same time we’re facing catastrophic risks to society due to powerful technologies. And a vastly constrained resource environment. We need to rethink our systems of governance; more cooperation and less competition and at scales that are suited to today’s problems and today’s technologies. With security and precautions built in. What comes after democracy might very well be more democracy, but it will look very different.

This feels like a challenge worthy of our security expertise.

This text is the transcript from a keynote speech delivered during the RSA Conference in San Francisco on April 25, 2023. It was previously published in Cyberscoop. I thought I posted it to my blog and Crypto-Gram last year, but it seems that I didn’t.

As India concluded the world’s largest election on June 5, 2024, with over 640 million votes counted, observers could assess how the various parties and factions used artificial intelligence technologies—and what lessons that holds for the rest of the world.

The campaigns made extensive use of AI, including deepfake impersonations of candidates, celebrities and dead politicians. By some estimates, millions of Indian voters viewed deepfakes.

But, despite fears of widespread disinformation, for the most part the campaigns, candidates and activists used AI constructively in the election. They used AI for typical political activities, including mudslinging, but primarily to better connect with voters.

Deepfakes without the deception

Political parties in India spent an estimated US$50 million on authorized AI-generated content for targeted communication with their constituencies this election cycle. And it was largely successful.

Indian political strategists have long recognized the influence of personality and emotion on their constituents, and they started using AI to bolster their messaging. Young and upcoming AI companies like The Indian Deepfaker, which started out serving the entertainment industry, quickly responded to this growing demand for AI-generated campaign material.

In January, Muthuvel Karunanidhi, former chief minister of the southern state of Tamil Nadu for two decades, appeared via video at his party’s youth wing conference. He wore his signature yellow scarf, white shirt, dark glasses and had his familiar stance—head slightly bent sideways. But Karunanidhi died in 2018. His party authorized the deepfake.

In February, the All-India Anna Dravidian Progressive Federation party’s official X account posted an audio clip of Jayaram Jayalalithaa, the iconic superstar of Tamil politics colloquially called “Amma” or “Mother.” Jayalalithaa died in 2016.

Meanwhile, voters received calls from their local representatives to discuss local issues—except the leader on the other end of the phone was an AI impersonation. Bhartiya Janta Party (BJP) workers like Shakti Singh Rathore have been frequenting AI startups to send personalized videos to specific voters about the government benefits they received and asking for their vote over WhatsApp.

Multilingual boost

Deepfakes were not the only manifestation of AI in the Indian elections. Long before the election began, Indian Prime Minister Narendra Modi addressed a tightly packed crowd celebrating links between the state of Tamil Nadu in the south of India and the city of Varanasi in the northern state of Uttar Pradesh. Instructing his audience to put on earphones, Modi proudly announced the launch of his “new AI technology” as his Hindi speech was translated to Tamil in real time.

In a country with 22 official languages and almost 780 unofficial recorded languages, the BJP adopted AI tools to make Modi’s personality accessible to voters in regions where Hindi is not easily understood. Since 2022, Modi and his BJP have been using the AI-powered tool Bhashini, embedded in the NaMo mobile app, to translate Modi’s speeches with voiceovers in Telugu, Tamil, Malayalam, Kannada, Odia, Bengali, Marathi and Punjabi.

As part of their demos, some AI companies circulated their own viral versions of Modi’s famous monthly radio show “Mann Ki Baat,” which loosely translates to “From the Heart,” which they voice cloned to regional languages.

Adversarial uses

Indian political parties doubled down on online trolling, using AI to augment their ongoing meme wars. Early in the election season, the Indian National Congress released a short clip to its 6 million followers on Instagram, taking the title track from a new Hindi music album named “Chor” (thief). The video grafted Modi’s digital likeness onto the lead singer and cloned his voice with reworked lyrics critiquing his close ties to Indian business tycoons.

The BJP retaliated with its own video, on its 7-million-follower Instagram account, featuring a supercut of Modi campaigning on the streets, mixed with clips of his supporters but set to unique music. It was an old patriotic Hindi song sung by famous singer Mahendra Kapoor, who passed away in 2008 but was resurrected with AI voice cloning.

Modi himself quote-tweeted an AI-created video of him dancing—a common meme that alters footage of rapper Lil Yachty on stage—commenting “such creativity in peak poll season is truly a delight.”

In some cases, the violent rhetoric in Modi’s campaign that put Muslims at risk and incited violence was conveyed using generative AI tools, but the harm can be traced back to the hateful rhetoric itself and not necessarily the AI tools used to spread it.

The Indian experience

India is an early adopter, and the country’s experiments with AI serve as an illustration of what the rest of the world can expect in future elections. The technology’s ability to produce nonconsensual deepfakes of anyone can make it harder to tell truth from fiction, but its consensual uses are likely to make democracy more accessible.

The Indian election’s embrace of AI that began with entertainment, political meme wars, emotional appeals to people, resurrected politicians and persuasion through personalized phone calls to voters has opened a pathway for the role of AI in participatory democracy.

The surprise outcome of the election, with the BJP’s failure to win its predicted parliamentary majority, and India’s return to a deeply competitive political system especially highlights the possibility for AI to have a positive role in deliberative democracy and representative governance.

Lessons for the world’s democracies

It’s a goal of any political party or candidate in a democracy to have more targeted touch points with their constituents. The Indian elections have shown a unique attempt at using AI for more individualized communication across linguistically and ethnically diverse constituencies, and making their messages more accessible, especially to rural, low-income populations.

AI and the future of participatory democracy could make constituent communication not just personalized but also a dialogue, so voters can share their demands and experiences directly with their representatives—at speed and scale.

India can be an example of taking its recent fluency in AI-assisted party-to-people communications and moving it beyond politics. The government is already using these platforms to provide government services to citizens in their native languages.

If used safely and ethically, this technology could be an opportunity for a new era in representative governance, especially for the needs and experiences of people in rural areas to reach Parliament.

This essay was written with Vandinika Shukla and previously appeared in The Conversation.

Public polling is a critical function of modern political campaigns and movements, but it isn’t what it once was. Recent US election cycles have produced copious postmortems explaining both the successes and the flaws of public polling. There are two main reasons polling fails.

First, nonresponse has skyrocketed. It’s radically harder to reach people than it used to be. Few people fill out surveys that come in the mail anymore. Few people answer their phone when a stranger calls. Pew Research reported that 36% of the people they called in 1997 would talk to them, but only 6% by 2018. Pollsters worldwide have faced similar challenges.

Second, people don’t always tell pollsters what they really think. Some hide their true thoughts because they are embarrassed about them. Others behave as a partisan, telling the pollster what they think their party wants them to say—or what they know the other party doesn’t want to hear.

Despite these frailties, obsessive interest in polling nonetheless consumes our politics. Headlines more likely tout the latest changes in polling numbers than the policy issues at stake in the campaign. This is a tragedy for a democracy. We should treat elections like choices that have consequences for our lives and well-being, not contests to decide who gets which cushy job.

Polling Machines?

AI could change polling. AI can offer the ability to instantaneously survey and summarize the expressed opinions of individuals and groups across the web, understand trends by demographic, and offer extrapolations to new circumstances and policy issues on par with human experts. The politicians of the (near) future won’t anxiously pester their pollsters for information about the results of a survey fielded last week: they’ll just ask a chatbot what people think. This will supercharge our access to realtime, granular information about public opinion, but at the same time it might also exacerbate concerns about the quality of this information.

I know it sounds impossible, but stick with us.

Large language models, the AI foundations behind tools like ChatGPT, are built on top of huge corpuses of data culled from the Internet. These are models trained to recapitulate what millions of real people have written in response to endless topics, contexts, and scenarios. For a decade or more, campaigns have trawled social media, looking for hints and glimmers of how people are reacting to the latest political news. This makes asking questions of an AI chatbot similar in spirit to doing analytics on social media, except that they are generative: you can ask them new questions that no one has ever posted about before, you can generate more data from populations too small to measure robustly, and you can immediately ask clarifying questions of your simulated constituents to better understand their reasoning

Researchers and firms are already using LLMs to simulate polling results. Current techniques are based on the ideas of AI agents. An AI agent is an instance of an AI model that has been conditioned to behave in a certain way. For example, it may be primed to respond as if it is a person with certain demographic characteristics and can access news articles from certain outlets. Researchers have set up populations of thousands of AI agents that respond as if they are individual members of a survey population, like humans on a panel that get called periodically to answer questions.

The big difference between humans and AI agents is that the AI agents always pick up the phone, so to speak, no matter how many times you contact them. A political candidate or strategist can ask an AI agent whether voters will support them if they take position A versus B, or tweaks of those options, like policy A-1 versus A-2. They can ask that question of male voters versus female voters. They can further limit the query to married male voters of retirement age in rural districts of Illinois without college degrees who lost a job during the last recession; the AI will integrate as much context as you ask.

What’s so powerful about this system is that it can generalize to new scenarios and survey topics, and spit out a plausible answer, even if its accuracy is not guaranteed. In many cases, it will anticipate those responses at least as well as a human political expert. And if the results don’t make sense, the human can immediately prompt the AI with a dozen follow-up questions.

Making AI agents better polling subjects

When we ran our own experiments in this kind of AI use case with the earliest versions of the model behind ChatGPT (GPT-3.5), we found that it did a fairly good job at replicating human survey responses. The ChatGPT agents tended to match the responses of their human counterparts fairly well across a variety of survey questions, such as support for abortion and approval of the US Supreme Court. The AI polling results had average responses, and distributions across demographic properties such as age and gender, similar to real human survey panels.

Our major systemic failure happened on a question about US intervention in the Ukraine war.  In our experiments, the AI agents conditioned to be liberal were predominantly opposed to US intervention in Ukraine and likened it to the Iraq war. Conservative AI agents gave hawkish responses supportive of US intervention. This is pretty much what most political experts would have expected of the political equilibrium in US foreign policy at the start of the decade but was exactly wrong in the politics of today.

This mistake has everything to do with timing. The humans were asked the question after Russia’s full-scale invasion in 2022, whereas the AI model was trained using data that only covered events through September 2021. The AI got it wrong because it didn’t know how the politics had changed. The model lacked sufficient context on crucially relevant recent events.

We believe AI agents can overcome these shortcomings. While AI models are dependent on  the data they are trained with, and all the limitations inherent in that, what makes AI agents special is that they can automatically source and incorporate new data at the time they are asked a question. AI models can update the context in which they generate opinions by learning from the same sources that humans do. Each AI agent in a simulated panel can be exposed to the same social and media news sources as humans from that same demographic before they respond to a survey question. This works because AI agents can follow multi-step processes, such as reading a question, querying a defined database of information (such as Google, or the New York Times, or Fox News, or Reddit), and then answering a question.

In this way, AI polling tools can simulate exposing their synthetic survey panel to whatever news is most relevant to a topic and likely to emerge in each AI agent’s own echo chamber. And they can query for other relevant contextual information, such as demographic trends and historical data. Like human pollsters, they can try to refine their expectations on the basis of factors like how expensive homes are in a respondent’s neighborhood, or how many people in that district turned out to vote last cycle.

Likely use cases for AI polling

AI polling will be irresistible to campaigns, and to the media. But research is already revealing when and where this tool will fail. While AI polling will always have limitations in accuracy, that makes them similar to, not different from, traditional polling. Today’s pollsters are challenged to reach sample sizes large enough to measure statistically significant differences between similar populations, and the issues of nonresponse and inauthentic response can make them systematically wrong. Yet for all those shortcomings, both traditional and AI-based polls will still be useful. For all the hand-wringing and consternation over the accuracy of US political polling, national issue surveys still tend to be accurate to within a few percentage points. If you’re running for a town council seat or in a neck-and-neck national election, or just trying to make the right policy decision within a local government, you might care a lot about those small and localized differences. But if you’re looking to track directional changes over time, or differences between demographic groups, or to uncover insights about who responds best to what message, then these imperfect signals are sufficient to help campaigns and policymakers.

Where AI will work best is as an augmentation of more traditional human polls. Over time, AI tools will get better at anticipating human responses, and also at knowing when they will be most wrong or uncertain. They will recognize which issues and human communities are in the most flux, where the model’s training data is liable to steer it in the wrong direction. In those cases, AI models can send up a white flag and indicate that they need to engage human respondents to calibrate to real people’s perspectives. The AI agents can even be programmed to automate this. They can use existing survey tools—with all their limitations and latency—to query for authentic human responses when they need them.

This kind of human-AI polling chimera lands us, funnily enough, not too distant from where survey research is today. Decades of social science research has led to substantial innovations in statistical methodologies for analyzing survey data. Current polling methods already do substantial modeling and projecting to predictively model properties of a general population based on sparse survey samples. Today, humans fill out the surveys and computers fill in the gaps. In the future, it will be the opposite: AI will fill out the survey and, when the AI isn’t sure what box to check, humans will fill the gaps. So if you’re not comfortable with the idea that political leaders will turn to a machine to get intelligence about which candidates and policies you want, then you should have about as many misgivings about the present as you will the future.

And while the AI results could improve quickly, they probably won’t be seen as credible for some time. Directly asking people what they think feels more reliable than asking a computer what people think. We expect these AI-assisted polls will be initially used internally by campaigns, with news organizations relying on more traditional techniques. It will take a major election where AI is right and humans are wrong to change that.

This essay was written with Aaron Berger, Eric Gong, and Nathan Sanders, and previously appeared on the Harvard Kennedy School Ash Center’s website.