Twitter is having intermittent problems with its two-factor authentication system:

Not all users are having problems receiving SMS authentication codes, and those who rely on an authenticator app or physical authentication token to secure their Twitter account may not have reason to test the mechanism. But users have been self-reporting issues on Twitter since the weekend, and WIRED confirmed that on at least some accounts, authentication texts are hours delayed or not coming at all. The meltdown comes less than two weeks after Twitter laid off about half of its workers, roughly 3,700 people. Since then, engineers, operations specialists, IT staff, and security teams have been stretched thin attempting to adapt Twitter’s offerings and build new features per new owner Elon Musk’s agenda.

On top of that, it seems that the system has a new vulnerability:

A researcher contacted Information Security Media Group on condition of anonymity to reveal that texting “STOP” to the Twitter verification service results in the service turning off SMS two-factor authentication.

“Your phone has been removed and SMS 2FA has been disabled from all accounts,” is the automated response.

The vulnerability, which ISMG verified, allows a hacker to spoof the registered phone number to disable two-factor authentication. That potentially exposes accounts to a password reset attack or account takeover through password stuffing.

This is not a good sign.

Researchers have used thermal cameras and ML guessing techniques to recover passwords from measuring the residual heat left by fingers on keyboards. From the abstract:

We detail the implementation of ThermoSecure and make a dataset of 1,500 thermal images of keyboards with heat traces resulting from input publicly available. Our first study shows that ThermoSecure successfully attacks 6-symbol, 8-symbol, 12-symbol, and 16-symbol passwords with an average accuracy of 92%, 80%, 71%, and 55% respectively, and even higher accuracy when thermal images are taken within 30 seconds. We found that typing behavior significantly impacts vulnerability to thermal attacks, where hunt-and-peck typists are more vulnerable than fast typists (92% vs 83% thermal attack success if performed within 30 seconds). The second study showed that the keycaps material has a statistically significant effect on the effectiveness of thermal attacks: ABS keycaps retain the thermal trace of users presses for a longer period of time, making them more vulnerable to thermal attacks, with a 52% average attack accuracy compared to 14% for keyboards with PBT keycaps.

“ABS” is Acrylonitrile Butadiene Styrene, which some keys are made of. Others are made of Polybutylene Terephthalate (PBT). PBT keys are less vulnerable.

But, honestly, if someone can train a camera at your keyboard, you have bigger problems.

News article.

Interesting, isn’t it….and it’s true! Hackers can use finger heat to crack passwords now -all with the help of Artificial Intelligence technology. And a group of researchers discovered this at the University of the Glasgow School of Computing Science in the UK.

‘ACM Transactions on Privacy and Security’ Journal has published some notes on the subject and also published some text-line related to how a professor named Mohammad Khamis discovered a technique to track down the flaw using a system named ThermoSecure. It is a system where a thermal camera is used to recognize the touch on the keys made by an individual.

Remarkably, the system can not only be used to detect the touch made by the fingers, it can also crack passwords, as there is no difference between a touch made by a hacker or the actual owner.

Meaning, the technology, if and when fallen into the wrong hands, can break into an ATM keypad or a computer or a network.

What’s good in the research and the newly developed technology is that the finger touch detection can only be used within 65 seconds(1min+) made on the keys. Meaning 86% of passwords can be detected within 20 seconds of finger touch. And 76% of them can be detected using thermal cameras within 30 seconds and 62% after 60 seconds.

Passwords made of 6 characters were easily detectable using ThermoSecure technology and those with 12 characters and long were difficult to detect.

The bad part is that such tools are already available online for a price of $230 and are in use in continents such as Canada, the United States and some parts of Europe.

 

The post Now Finger Heat can crack Passwords with the help of AI appeared first on Cybersecurity Insiders.

Sometimes browser spellcheckers leak passwords:

When using major web browsers like Chrome and Edge, your form data is transmitted to Google and Microsoft, respectively, should enhanced spellcheck features be enabled.

Depending on the website you visit, the form data may itself include PII­—including but not limited to Social Security Numbers (SSNs)/Social Insurance Numbers (SINs), name, address, email, date of birth (DOB), contact information, bank and payment information, and so on.

The solution is to only use the spellchecker options that keep the data on your computer—and don’t send it into the cloud.

Thought experiment story of someone who lost everything in a house fire, and now can’t log into anything:

But to get into my cloud, I need my password and 2FA. And even if I could convince the cloud provider to bypass that and let me in, the backup is secured with a password which is stored in—you guessed it—my Password Manager.

I am in cyclic dependency hell. To get my passwords, I need my 2FA. To get my 2FA, I need my passwords.

It’s a one-in-a-million story, and one that’s hard to take into account in system design.

This is where we reach the limits of the “Code Is Law” movement.

In the boring analogue world—I am pretty sure that I’d be able to convince a human that I am who I say I am. And, thus, get access to my accounts. I may have to go to court to force a company to give me access back, but it is possible.

But when things are secured by an unassailable algorithm—I am out of luck. No amount of pleading will let me without the correct credentials. The company which provides my password manager simply doesn’t have access to my passwords. There is no-one to convince. Code is law.

Of course, if I can wangle my way past security, an evil-doer could also do so.

So which is the bigger risk?

  • An impersonator who convinces a service provider that they are me?
  • A malicious insider who works for a service provider?
  • Me permanently losing access to all of my identifiers?

I don’t know the answer to that.

Those risks are in the order of most common to least common, but that doesn’t necessarily mean that they are in risk order. They probably are, but then we’re left with no good way to handle someone who has lost all their digital credentials—computer, phone, backup, hardware token, wallet with ID cards—in a catastrophic house fire.

I want to remind readers that this isn’t a true story. It didn’t actually happen. It’s a thought experiment.

These techniques are not new, but they’re increasingly popular:

…some forms of MFA are stronger than others, and recent events show that these weaker forms aren’t much of a hurdle for some hackers to clear. In the past few months, suspected script kiddies like the Lapsus$ data extortion gang and elite Russian-state threat actors (like Cozy Bear, the group behind the SolarWinds hack) have both successfully defeated the protection.

[…]

Methods include:

  • Sending a bunch of MFA requests and hoping the target finally accepts one to make the noise stop.
  • Sending one or two prompts per day. This method often attracts less attention, but “there is still a good chance the target will accept the MFA request.”
  • Calling the target, pretending to be part of the company, and telling the target they need to send an MFA request as part of a company process.

FIDO2 multi-factor authentication systems are not susceptible to these attacks, because they are tied to a physical computer.

And even though there are attacks against these two-factor systems, they’re much more secure than not having them at all. If nothing else, they block pretty much all automated attacks.